Waveguide-Coupled Photonic Crystal Cavity for Quantum Dot Spin Readout

نویسندگان

  • S. Laurent
  • S. Varoutsis
  • L. Le Gratiet
  • A. Lematre
  • I. Sagnes
  • F. Raineri
  • A. Levenson
  • I. Robert - Philip
  • I. Abram
چکیده

We present a waveguide-coupled photonic crystal H1 cavity structure in which the orthogonal dipole modes couple to spatially separated photonic crystal waveguides. Coupling of each cavity mode to its respective waveguide with equal efficiency is achieved by adjusting the position and orientation of the waveguides. The behavior of the optimized device is experimentally verified for where the cavity mode splitting is larger and smaller than the cavity mode linewidth. In both cases, coupled Q-factors up to 1600 and contrast ratios up to 10 are achieved. This design may allow for spin state readout of a self-assembled quantum dot positioned at the cavity center or function as an ultra-fast optical switch operating at the single photon level. © 2013 Optical Society of America OCIS codes: (230.5298) Photonic crystals; (230.5590) Quantum-well, -wire and -dot devices References and links 1. J.L. O’Brien, J. Akira Furusawa and J. Vučković, “Photonic quantum technologies,” Nature Photonics 3, 687–695 (2009). 2. M.A. Nielsen, “Optical Quantum Computation using Cluster States,” Physical Review Letters 93, 040503 (2004) 3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). 4. D. P. DiVincenzo, “The Physical Implementation of Quantum Computation,” Fortschritte der Physik 48, 771–783 (2000). 5. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Physical Review Letters 87, 157401 (2001). 6. N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer and D. G. Steel “Coherent Optical Control of the Quantum State of a Single Quantum Dot,” Science 282, 1473–1476 (1998). 7. W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–30 (2012). 8. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–5 (2012). 9. I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, and M. S. Skolnick, “Interfacing Spins in an InGaAs Quantum Dot to a Semiconductor Waveguide Circuit Using Emitted Photons,” Physical Review Letters 110, 037402 (2013). 10. A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Physical Review Letters 83, 4204–7 (1999). 11. A. C. T. Thijssen, M. J. Cryan, J. G. Rarity, and R. Oulton, “Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities,” Optics Express 20, 22412–28 (2012). 12. H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Optics Express 20, 28292–300 (2012). 13. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lematre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Applied Physics Letters 87, 163107 (2005). 14. Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Applied Physics Letters 94, 033102 (2009). 15. M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New Journal of Physics 11, 033022 (2009). 16. G.-H. Kim, Y.-H. Lee, A. Shinya, and M. Notomi, “Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode,” Optics Express 12, 6624–6631 (2004). 17. Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mork, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Applied Physics Letters 101, 251113 (2012). 18. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible freesoftware package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010). 19. M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” Journal of Applied Physics 101, 073107 (2007). 20. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large GroupVelocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Physical Review Letters 87, 1–4 (2001). 21. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Applied Physics Letters 90, 073102 (2007). 22. A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Applied Physics Letters 89, 101102 (2006). 23. L. J. Martinez, A. Garcia-Martin, and P. A. Postigo, “Coupling between waveguides and cavities in 2D photonic crystals: the role of mode symmetry,” in Microtechnologies for the New Millennium 2005, , G. Badenes, D. Abbott, and A. Serpenguzel, eds. (International Society for Optics and Photonics, 2005), pp. 879–884. 24. A. Schwagmann, S. Kalliakos, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “In-plane single-photon emission from a L3 cavity coupled to a photonic crystal waveguide,” Optics Express 20, 28614–24 (2012) 25. A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, and A. M. Fox, “Mode structure of coupled L3 photonic crystal cavities,” Optics Express 19, 5670–5 (2011). 26. T. F. Krauss, “Slow light in photonic crystal waveguides,” Journal of Physics D: Applied Physics 40, 2666–2670 (2007). 27. N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Applied Physics Letters 101, 051116 (2012). 28. E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Optics Express 13, 5064–73 (2005). 29. S. S. Johnson and J. J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Optics Express 8, 363–376 (2001). 30. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Optics Express 16, 12154–12162 (2008). 31. F. Grazioso, B. R. Patton, and J. M. Smith, “A high stability beam-scanning confocal optical microscope for low temperature operation,” The Review of Scientific Instruments 81, 093705 (2010). 32. I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, and M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Applied Physics Letters 98, 041101 (2011). 33. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Applied Physics Letters 100, 121116 (2012). 34. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nature Photonics 6, 56–61 (2011). 35. J. H. Quilter, R. J. Coles, A. J. Ramsay, A. M. Fox, and M. S. Skolnick, “Enhanced photocurrent readout for a quantum dot qubit by bias modulation,” Applied Physics Letters 102, 181108 (2013). 36. S. Michaelis de Vasconcellos, S. Gordon, M. Bichler, T. Meier, and A. Zrenner, “Coherent control of a single exciton qubit by optoelectronic manipulation,” Nature Photonics 4, 545–548 (2010). 37. A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast Electrical Control of a Quantum Dot Strongly Coupled to a Photonic-Crystal Cavity,” Physical Review Letters 104, 1–4 (2010).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Waveguide-coupled photonic crystal cavity for quantum dot spin readout.

We present a waveguide-coupled photonic crystal H1 cavity structure in which the orthogonal dipole modes couple to spatially separated photonic crystal waveguides. Coupling of each cavity mode to its respective waveguide with equal efficiency is achieved by adjusting the position and orientation of the waveguides. The behavior of the optimized device is experimentally verified for where the cav...

متن کامل

Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

Articles you may be interested in Waveguide-integrated photonic crystal spectrometer with camera readout Appl. Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers Appl.

متن کامل

ar X iv : p hy si cs / 0 50 40 77 v 1 1 1 A pr 2 00 5 Coupled mode theory for photonic crystal cavity - waveguide interaction

We derive a coupled mode theory for the interaction of an optical cavity with a waveguide that includes waveguide dispersion. The theory can be applied to photonic crystal cavity waveguide structures. We derive an analytical solution to the add and drop spectra arising from such interactions in the limit of linear dispersion. In this limit, the spectra can accurately predict the cold cavity qua...

متن کامل

Quantum control of a spin qubit coupled to a photonic crystal cavity

A key ingredient for a quantum network is an interface between stationary quantum bits and photons, which act as flying qubits for interactions and communication. Photonic crystal architectures are promising platforms for enhancing the coupling of light to solid-state qubits. Quantum dots can be integrated into a photonic crystal, with optical transitions coupling to photons and spin states for...

متن کامل

Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013